
Extended Abstract

Motivation Traditional Multi-Agent Reinforcement Learning (MARL) algorithms typically update
agents either all at once (synchronously) or one-by-one in a fixed sequence. Synchronous updates
often introduce conflicting gradient signals that slow or destabilize learning, while fixed sequences
ignore the fact that agents’ relative importance and interactions evolve over time. In this work, we
explore dynamic update ordering strategies that adaptively schedule each agent’s policy updates
based on real-time signals of inter-agent dependency, with the aim of accelerating convergence and
enhancing the stability of multi-agent training.

Method We implemented and explored three dynamic agent ordering strategies: Dynamic De-
pendency Graphs, Shapley Value Ordering, and Adaptive Leader-Follower Assignment. Dynamic
Dependency Graphs constructs a directed acyclic graph (DAG) using deep embeddings to represent
agent dependencies, refreshing it periodically to capture the dynamic nature of such relationships.
Shapley Value Ordering computes, at each update step, each agent’s marginal impact on the sum of
all agents’ expected rewards and then updates agents in descending order of these contributions. Fi-
nally, Adaptive Leader-Follower Assignment dynamically assigns leadership role(s) amongst agents,
allowing it to update leaders by anticipating their response of followers and regularly reassessing
these roles based on performance metrics–a strategy inspired by Stackelberg game dynamics.

Implementation We integrated each dynamic ordering strategy into RMAPPO—a multi-agent
extension of PPO—and compared against its default round-robin scheduler, which updates agents
sequentially by ID. Experiments were conducted on two Multi-Particle Agent (MPE) environments:
simple_tag, in which a fully cooperative team of three slower predators works together to catch a
faster evader in an obstacle-filled arena, and simple_adversary, a mixed cooperative–competitive task
where two agents must reach a hidden landmark while evading a single adversary. All policies were
trained for 1.5 million environment steps with a fixed learning rate of 2× 10−4, and performance
was assessed by final evaluation reward, stability in episodic returns, and total runtime.

Results In the simple_tag environment, Shapley Value Ordering (final evaluation reward: 11.36)
and Dynamic Dependency Graph (final evaluation reward: 8.70) significantly outperformed the
baseline round-robin ordering (final evaluation reward: 2.98), while the Adaptive Leader-Follower
Assignment slightly underperformed (final evaluation reward: 2.32). For this environment, the
Dynamic Dependency Graph was the most stable and had the lowest runtime, nearly 5x faster than
the baseline. On simple_adversary all dynamic ordering strategies underperformed the baseline and
achieved lower final evaluation rewards.

Discussion Shapley Value Ordering’s strong performance on the purely cooperative simple_tag
task makes sense: by quantifying each predator’s marginal contribution, it focuses updates on
the agents driving team success, reducing interference and speeding coordination. The Dynamic
Dependency Graph achieved the most stable training and fastest convergence because it builds
and follows a consistent map of inter-agent influences, avoiding the noise of fluctuating gradients.
Adaptive Leader–Follower Assignment fell behind the baseline due to its rigid hierarchy, which
clashes with the symmetric roles of the predators and prevents flexible cooperation. In the mixed-
motive simple_adversary scenario, conflicting goals between good agents and the adversary generate
ambiguous priority signals, so all adaptive schedulers underperform simple round-robin updates.
These findings underscore that dynamic ordering thrives when objectives are fully aligned, but mixed
cooperative–competitive settings require team-aware or hybrid scheduling approaches.

Conclusion Dynamic update ordering offers clear benefits in environments with a single shared
objective, improving both learning speed and stability. However, in mixed cooperative–competitive
settings, its advantages disappear without mechanisms to separate or prioritize teams. Future work
should explore hybrid or team-partitioned schedulers that maintain intra-team cohesion while man-
aging inter-team conflict, test scalability in larger and more diverse agent populations, and develop
theoretical guarantees for convergence under dynamic scheduling.
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Abstract

We examine dynamic agent update ordering strategies in Multi-Agent Reinforce-
ment Learning (MARL) by integrating three adaptive schedulers into the RMAPPO
framework. Conventional MARL updates—either synchronous or in a fixed se-
quence—can destabilize training and ignore evolving inter-agent dependencies.
Our methods include Dynamic Dependency Graphs, which build a DAG over
deep trajectory embeddings to capture changing agent dependencies; Shapley
Value Ordering, which ranks agents by their marginal contribution to the global
return; and Adaptive Leader–Follower Assignment, which applies Stackelberg
game principles to designate leaders and followers. We compare these approaches
against a baseline round-robin scheduler on two Multi-Agent Particle Environment
(MPE) benchmarks: the fully cooperative simple_tag task and the mixed coopera-
tive–competitive simple_adversary task. In simple_tag, Shapley Value Ordering
achieves the highest final evaluation reward, while Dependency Graphs deliver
the best balance of stability and runtime. In simple_adversary, the round-robin
baseline outperforms all adaptive methods. These findings highlight that dynamic
update ordering can substantially boost learning when objectives are aligned, but
that mixed-motive environments may require team-aware or hybrid scheduling
strategies.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) extends the single-agent paradigm to settings where
multiple learning agents must coordinate or compete in a shared environment. A key challenge in
MARL is non-stationarity: when one agent updates its policy, it changes the environment experienced
by all others. Standard practice either updates all agents simultaneously—leading to gradient
interference and unstable learning—or in a fixed, round-robin sequence, which cannot adapt as
agents’ roles and importance shift over time.

In this work, we introduce dynamic update ordering, a set of techniques continuously adjust the
order in which agents are trained based on live performance signals. We develop and compare
three instantiations of this idea—Directed Acyclic Graphs, Shapley Value Ordering, and Adaptive
Leader–Follower Assignment—each of which aims to prioritize the most impactful updates at every
step. By integrating these schedulers into RMAPPO and evaluating on both cooperative and mixed-
motive benchmarks, we show that dynamic ordering can markedly speed convergence when agents
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share a common goal, while highlighting the need for team-aware extensions in environments with
competing objectives.

2 Related Work

Recent papers in multi-agent reinforcement learning (MARL) systems recognize one significant issue:
the non-convergence of agents learning concurrently in a shared environment. When all agents update
their policies simultaneously, the learning dynamics become unstable due to shifting behaviors of
others. Lowe et al. (2017).

Trust-region-based algorithms like MAPPO Yu et al. (2021) and CoPPO Xu et al. (2021) adapt
Proximal Policy Optimization (PPO) to multi-agent settings, achieving strong empirical results across
cooperative benchmarks. However, these methods rely on synchronous policy updates, which can
potentially increase interference between agents and delay convergence in competitive environments.
To mitigate this, researchers have proposed sequential update strategies. HAPPO Kuba et al. (2022)
adopts a sequential variant of PPO, ensuring joint policy improvement by updating agents one at a
time using decomposed trust-region constraints. A2PO Wang et al. (2023) further improves sample
efficiency by reusing a single rollout across all agent updates while maintaining per-agent monotonic
improvement guarantees.

Both HAPPO and A2PO rely on fixed or heuristic update orders. A2PO introduces a semi-greedy
approach that selects agents based on the magnitude of their advantage estimates. However, fixed
or naive orderings may underperform in tasks where agent importance fluctuates over time. Recent
efforts have begun to explore learned update orderings. PMAT Hu et al. (2023) proposes learning a
sequential action order via Plackett–Luce sampling. This demonstrates that differentiable ranking
mechanisms can guide effective agent decision-making in execution-time coordination (and naturally
extends to training-time scheduling).

Ideas in adaptive coordinate descent in optimization Wright (2015), show that update frequency and
order significantly impact convergence speed. Similarly, role inference and meta-learning methods in
MARL Jaques et al. (2019) highlight that structural priors and dynamic role assignment can help
agents adaptively specialize. Our work builds on these insights by learning a dynamic agent update
sequence, leading to improvements in the optimization process.

3 Methods

3.1 Adaptive Leader-Follower Assignment

Inspired by Stackelberg game theory from economics, we dynamically assign agents as leaders or
followers based on performance metrics (Fiez et al. (2020)). Leaders update parameters first, while
followers condition their updates on observed leader changes.

3.1.1 Mathematical Formulation

At training step t, agents are partitioned into leaders Lt and followers Ft. Leaders update normally:

θ
(t+1)
i = θ

(t)
i − α∇θiJi(θ

(t)
i , θ

(t)
−i) ∀i ∈ Lt (1)

Followers incorporate leader parameter changes:

θ
(t+1)
j = θ

(t)
j − α∇θjJj(θ

(t)
j , {θ(t+1)

k }k∈Lt
, {θ(t)k }k∈Ft\{j}) ∀j ∈ Ft (2)

In our experiments on simple_tag and simple_adversary environments, we set good agents as leaders
while adversarial agents assume follower roles.

3.2 Shapley-Value Ordering

To focus updates on agents that most substantially drive team success, we first measure each agent’s
marginal contribution to the collective return. A rigorous way to compute these contributions is
via Shapley values from cooperative game theory, which allocate a coalition’s total reward fairly
among its members Ruggeri et al. (2024). By ranking agents according to their Shapley values at
each iteration, we ensure that those with the greatest impact are updated first.
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3.2.1 Mathematical Formulation

Let N be the set of all agents, and define

V (S) =
∑
j∈S

Eπ
θ(t)

[
Rj

]
as the expected cumulative reward of coalition S ⊆ N under the joint policy parameters θ(t). The
Shapley value for agent i at step t is

ϕ
(t)
i =

∑
S⊆N\{i}

|S|!
(
|N | − |S| − 1

)
!

|N |!

(
V (S ∪ {i})− V (S)

)
.

Agents are then ordered by descending ϕ
(t)
i to form the update sequence σ(t) = [σ1, . . . , σ|N |].

Updates proceed sequentially:

θ(t+1)
σk

= θ(t)σk
− α∇θσk

Jσk

(
θ(t)σk

, θ
(t)
−σk

)
, k = 1, . . . , |N |.

Exact calculation of ϕ(t)
i scales exponentially in |N |, so we approximate each Shapley value by

averaging marginal contributions over M coalitions sampled uniformly from N \ {i}.

3.3 Directed Acyclic Graph

We dynamically constructed a directed acyclic graph (DAG) to represent inter-agent dependencies and
decide agent update orderings. Here, an edge from agent i to j indicates that j’s policy update should
follow i’s to mitigate non-stationarity. To construct the DAG, we first encode each agent’s historical
trajectory via an embedding network; in this project, we use encode the reward history using an MLP
and produce an embedding using an RNN. From there, we compute pairwise self-attention scores
between these embeddings. After thresholding, we greedily construct a sparse, acyclic adjacency
matrix. The agent update order is computed using topological sort, which yields sequential batches.
Agents in the same batch are independent by definition and can therefore be updated in parallel, while
dependencies are strictly respected across batches.

3.3.1 Mathematical Formulation

Let there be n agents, each with policy πi parameterized by θi. At every T steps, for each agent i, an
embedding τi of its most recent L-step trajectory is computed as:

τi = RNN(MLP(ot−L+1:t
i )), (3)

where ot−L+1:t
i are the past L observations. These embeddings are projected into query, key, and

value vectors (qi, ki, vi), and a soft dependency score between each agent pair (i, j) is calculated via
scaled dot-product attention:

gij =


exp(q⊤i kj/

√
dk)∑n

m=1 exp(q⊤i km/
√
dk)

i ̸= j

0 i = j
(4)

Scores below a threshold δ are set to zero. Edges are greedily added in descending order of gij to
construct a binary adjacency matrix A, ensuring acyclicity.

Given the resulting DAG, a topological sort yields a set of K batches {B1,B2, . . . ,BK}. For each
batch Bk, the agents’ policies are updated in parallel using the same batch of trajectories D collected
before any updates, with an importance sampling correction to account for the potentially off-policy
nature of the data:

Li(θi) = ED

[
πi(ai|si; θi)
πi(ai|si; θold

i )
Ai(si, ai)

]
, i ∈ Bk (5)

where Ai(si, ai) denotes the advantage estimate for agent i. This procedure is repeated for all batches
in order, and the entire process (DAG construction, batching, policy updates) is refreshed every T
steps.
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4 Experimental Setup

Experiments were conducted using RMAPPO—a multi-agent PPO variant that extends MAPPO with
recurrent policy networks—where we replaced its default round-robin update schedule with each of
our three dynamic ordering strategies.

We evaluated on two benchmark tasks from the Multi-Agent Particle Environment (MPE) suite Lowe
et al. (2017).

simple_tag (Purely Cooperative) This predator–prey task forms a single cooperative team: three
slower “pursuer” agents work together to catch one faster “evader” in a bounded 2D world with static
obstacles.

• Observations: Each agent sees its own velocity and position, the relative positions of
landmarks and obstacles, and the relative positions and velocities of other agents.

• Action space: Discrete {no_op, left, right, down, up}.
• Rewards:

– Pursuers: +10 for each collision with the evader.
– Evader: –10 for each capture, plus a boundary-exit penalty b(x).

simple_adversary (Mixed Cooperative–Competitive) In this mixed-motive task, two “good” agents
cooperate to locate and reach one of two landmarks (only one of which is the true target) while
evading a single adversary that competes against them.

• Observations:
– Good agents see their goal-relative position, all landmark positions, and other agents’

relative positions.
– The adversary sees all landmark positions and the relative positions of the good agents.

• Action space: Same discrete five-move set as in simple_tag.
• Rewards:

– Good agents: −mini∈{good}∥pi−ptarget∥ and a penalty when the adversary approaches.
– Adversary: −∥padv − ptarget∥ (target identity unknown).

All methods are trained for 1.5 million environment steps using RMAPPO’s default hyperparameters:
learning rate 2× 10−4, discount factor γ = 0.99, and entropy coefficient 0.01.

5 Results

In Figure 1 below, we compile three key metrics for each environment and method. Reward is
measured by final episode eval reward from the environment, indicating overall performance of a
method on the given environment. Stability is measured by the standard deviation of eval rewards,
and the runtime is measured in total time required to reach 1.5 million training steps in minutes.
This metric helps us benchmark how much additional compute overhead a method introduces when
compared to our baseline round-robin results.

Classification Results
Environment Method Reward Stability Runtime (min)

simple_tag

DAG 8.70 3.70 59.29
Shapley 11.36 4.26 65.41

Stackleberg 2.32 6.57 165.02
Baseline 2.98 5.13 285.01

simple_adversary

DAG -0.47 0.81 41.14
Shapley -0.80 2.83 46.59

Stackleberg -0.42 0.73 41.73
Baseline 0.10 0.81 42.38

Figure 1: Quantitative Results of Various Classification Methods
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Below, we show the eval reward curves of our tested methods on the simple_tag and simple_adversary
environments. While some methods trained for longer than others, all reached 1.5 million training
steps, and the plots are cut off at this mark.

Figure 2: Method training curves for the simple_tag environment

Figure 3: Method training curves for the simple_adversary environment

We also investigated the distribution of agent order updates outputted by each dynamic ordering
method we investigated. Below, we plot the relative frequencies of each agent update permutation for
each method.
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Figure 4: Adversarial environment agent update results

Figure 5: Cooperative environment agent update results

5.1 Quantitative Evaluation

Our results revealed that our methods only outperformed baseline on the purely cooperative en-
vironment (i.e. simple_tag). Specifically, the Shapley Value-based ordering achieved the highest
evaluation reward (11.36) in the cooperative simple_tag environment. This method outperformed
DAG (8.70), Stackelberg (2.32), and baseline round-robin updates (2.98) in terms of reward. The
DAG method showed the best stability (3.70) and the best runtime (59.29 minutes). However, in the
mixed cooperative–competitive environment (i.e. simple_adversary), our baseline using round-robin
update ordering unexpectedly outperformed all dynamic strategies, with a final reward of 0.10 that
outperformed DAG (-0.47), Shapley (-0.80), and Stackelberg (-0.42).

5.2 Qualitative Analysis

From these results, we observe the significance of environmental settings and reward structure
on the effectiveness of the investigated dynamic agent ordering methods. We see that Shapley
Value-based ordering excels in purely cooperative scenarios by prioritizing agents based on their
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marginal contributions to the overall group goal, effectively optimizing overall group performance
by rewarding top performers. This conclusion is supported by the diverse distribution of orderings
used by Shapely compared to other methods as shown in Figure 4. While other methods concentrate
around a limited or fixed set of orderings, Shapely appears to evolve update orderings over time
based on the described contribution weighting.

The DAG ordering method explicitly maps inter-agent dependencies, which promotes stability and
computational efficiency. This makes it suitable for environments that require rapid convergence
and reliable updates. Meanwhile, the Stackelberg method implements an explicit leader-follower
approach, as shown by it’s tendency to keep agent id = 0 at the front of the update ordering as
shown in Figure 4. However, while theoretically promising, this method underperformed in purely
cooperative settings, suggesting limited advantages of explicit hierarchical structures in cooperative
settings without clear agent reward asymmetries.

The leading performance of our round-robin baseline in mixed cooperative–competitive scenar-
ios indicates that dynamic ordering strategies may struggle when update priorities must balance
intra-team cooperation and inter-team competition. All three methods explore different reordering
schemes—Shapley ordering sometimes elevates a good agent (id=2) ahead of the adversary (id=0),
and both DAG and Stackelberg schedulers occasionally prioritize the adversary—but none yield
performance gains. While this does not rule out improvements in mixed-motive settings, it highlights
the need for team-aware or hybrid scheduling strategies to disentangle conflicting update signals
before dynamic ordering can be effective.

6 Discussion

Our results show that our agent ordering methods effectiveness depends on environment type. Shapley
value-based ordering outperforms in simple_tag settings, achieving rewards of 11.36 compared to
DAG’s 8.70. This advantage disappears in simple_adversary where baseline round-robin matching
outperforms all dynamic methods.

We also observe a tradeoff between stability and reward in Table 1. DAG produces the most stable
training with a standard deviation of 3.70, but looses in reward performance. Shapley achieves peak
rewards but exhibits higher variance at 4.26. This trade-off forces may indicate that, in simpler
environments with smaller agent counts, we must choose between consistent learning and high
performance.

We also observe a large variation in runtime in our simple_tag environment. Baseline requires 285.01
minutes compared to DAG’s 59.29 minutes, a 4.8x difference. Both agents were trained for 1.5
million steps. This contradicts expectations since baseline round-robin ordering should require the
least computation per step.

As the number of agents n grows beyond the small teams studied here, the computational cost of
ordering methods diverges markedly. Exact Shapley Value computation incurs factorial time O(n!),
which DAG-based ordering must build and topologically sort a dependency graph with up to O(n2)
edges, yielding O(n2 log n) complexity. In contrast, the round-robin baseline cycles through agents
with constant overhead O(1) per step, independent of n.

The runtime gap in the cooperative simple_tag task likely stems from episode length differences: the
baseline’s pursuers fail to catch evaders efficiently (baseline return: 2.98), extending episodes and
increasing compute per training step. The Dynamic Dependency Graph and Shapley-Value methods
capture faster, which shorten episodes. Runtime variation may also reflect system loads or resource
allocations. In low-dimensional environments, episode-length dynamics may outweigh algorithmic
complexity in time taken.

7 Conclusion

Our experiments reveal that agent update ordering strategies exhibit environment-dependent ef-
fectiveness. Shapley value-based ordering achieved superior performance in purely cooperative
scenarios, highlighting that contribution-weighted updates can improve learning outcomes. On other
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the hand, DAG-structured updates delivered the best stability-runtime trade-off, suggesting that
explicit relationship modeling can be advantageous in the real world. Stackelberg’s poor performance
in purely cooperative settings demonstrates the limitations of centralized control. The baseline
outperformed all our proposed methods in mixed cooperative-competitive environments which tells
us that coordination strategies do not always translate to better outcomes.

It’s also essential to consider environment symmetry. Our initial proposal results on simple_spread
environment showed that perfectly symmetric conditions can nullify the benefits of strategic update
ordering. Although intuitive, it’s important to consider that when all agents face identical conditions,
update order becomes irrelevant since no agent has a strategic advantage over others.

Our work opens several promising directions. One of the primary limitations of our paper is the
computational constraints that restricted evaluation to small-scale environments with limited agent
counts. Given more compute, we’d like to first extend beyond discrete MPE scenarios to robotics
applications or more advanced scenarios. For example, SMAC (StarCraft Multi-Agent Challenge)
would have allowed us to observe more complex agent behaviors that were not present in MPE
and may emerge in environments with larger observation spaces. Second, we’d scale our systems
with 10+ agents, especially in more continuous action spaces where coordination complexity grows
exponentially.

Lastly, it would be interesting to develop formal convergence guarantees for dynamic ordering
strategies, particularly in non-stationary environments where agent policies continuously evolve.

8 Team Contributions

• Michael Zhang: Michael implemented the DAG mechanism. Specifically, he adapted
the results of Tian et al. (2023) to generate agent action graphs that represent the agent
relationships in both MPE environments.

• Karthik Vetrivel: Karthik was responsible for the implementation of Mechanism 3 and
its translation to agent updates in both environments. Specifically, he adapted the results
of Fiez et al. (2020) to the action and reward spaces of our evaluation environments and
constructed a leader–follower scheme that incorporated game-specific performance metrics
and agent relationships.

• Arjun Jain: Arjun implemented the Shapley-Value Ordering method. Specifically, he
integrated Shapley-Value Ordering into RMAPPO by coding periodic rollouts to estimate
each agent’s marginal contribution and sorting agents by descending Shapley value to
determine update priority.

Changes from Proposal We decided to no longer use the simple_spread MPE environment and use
simple_tag and simple_adversary environments instead. We realized that simple_spread is symmetric
with respect to agent roles–where all agents share identical objectives of covering landmarks. The
symmetric nature means that the agent update order does not meaningfully change the results
of our ordering methods. The asymmetric dynamics in simple_tag (predators vs. evader) and
simple_adversary (competing teams with distinct goals) involve asymmetric coordination patterns
that incentivize reordering, better exposing how our methods adapt update sequences.
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